Variable Rate Starter Fertilization Based on Soil Attributes

Jeffrey Vetsch and Dr. Daniel Kaiser Univ. of Minnesota

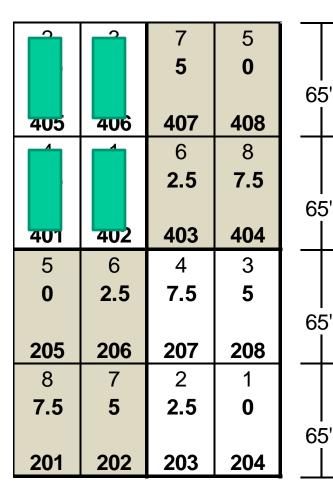
> Fluid Fertilizer Forum, Scottsdale, AZ February, 16 and 17, 2015

Background and Justification

- On calcareous (pH>7.4) P fixing soils a fluid starter fertilizer, like ammonium poly phosphate (APP), applied in-furrow may be an efficient and economic alternative to a traditional broadcast application.
 - Especially, on short-term rented land, where the farmer is not necessarily interested in building soil test levels (if, pH>7.7 hard to build soil test).
 - When commodity prices are lower and input cost reductions are desired.

Justification continued

- Widespread adoption of variable rate fertilization and availability of variable rate controllers have raised additional questions.
 - Does the optimum rate of starter fertilizer vary enough within a field to require variable rate application of starter?
 - What soil or landscape attributes can be used to make variable starter rate application recommendations?



- The objectives of this study were to:
 - measure the effect of APP rate on early growth of corn, grain yield and fertilizer use efficiency;
 - 2) determine if the optimum rate of APP varies within a typical Minnesota field;
 - develop and calibrate an algorithm for making variable rate starter applications based on soil attributes; and
 - compare and contrast the effects of a traditional broadcast P application on the response(s) observed in objectives 1, 2 and 3.

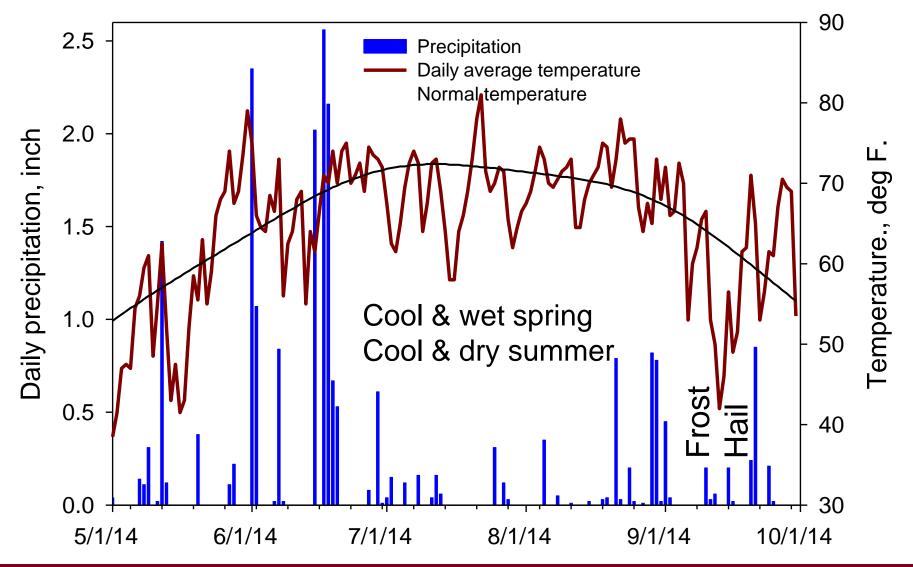
Experimental design

- Modified strip trial design
- Treatments randomized within replications in a split-plot arrangement
 - Main plot: Broadcast P rate (2)
 - Sub plot: APP starter rates (4)
- 16 replications per location
 - 16 reps × 8 treatments = 128 plots
- Response data from replications with similar soil attributes are pooled together

10' 10'

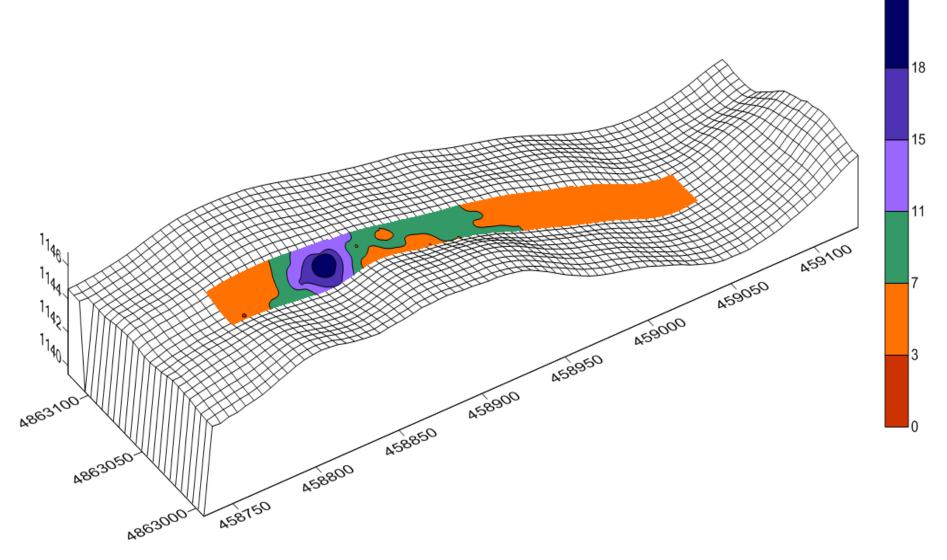
Methods and timeline

- Study initiated by Dr. Daniel Kaiser in 2012 (two sites) in south-central Minnesota, 3 sites in 2013, 3 sites in 2014.
- Soil samples analyzed for Bray P1, Olsen P, pH, CaCO₃ and exchangeable K
 - 0-6 inch samples: one composite (8 cores) sample from two neighboring plots or an area about 15 ft. by 35 ft.
 - 6-12 inch samples: one composite (16 cores) for each replication or an area 40 ft. by 130 ft (0.12 ac).
- Broadcast-apply P at 0 and 120 lb P₂O₅/ac as TSP incorporate with preplant tillage.

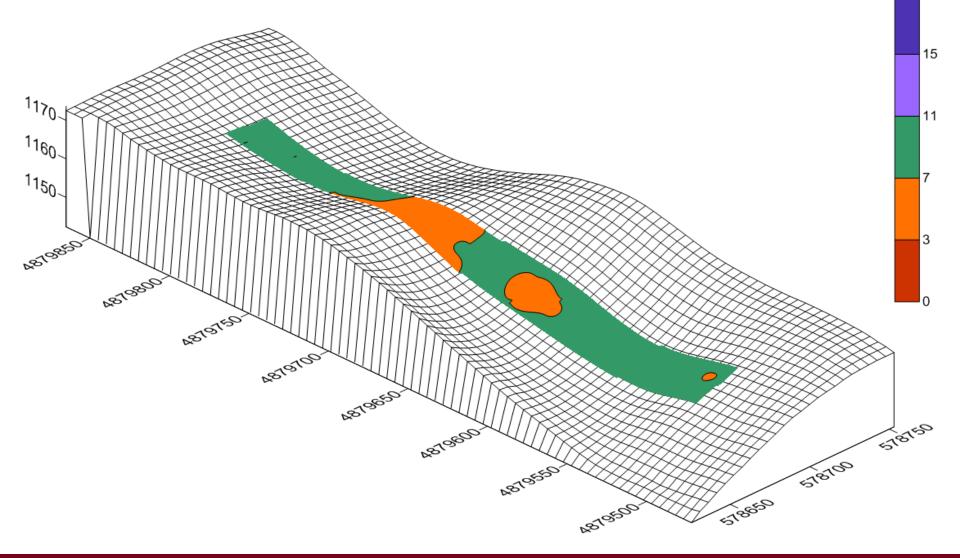

Methods and timeline (continued)

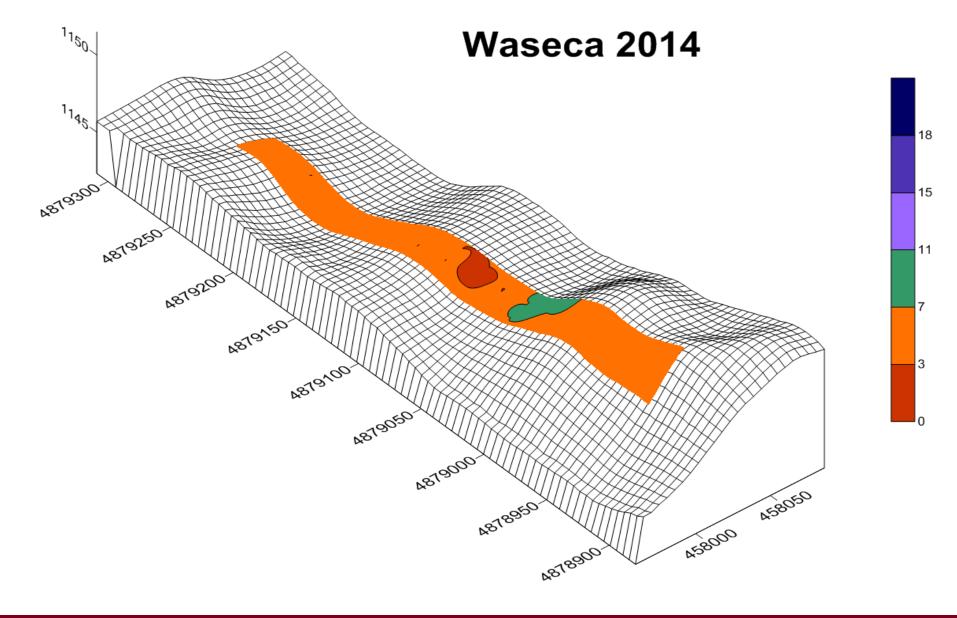
- Plant corn and apply APP in-furrow at 0, 2.5, 5 and 7.5 gal/ac or about 0, 10, 20 and 30 lb P₂O₅/ac
- At V5, harvest 8 whole plants for yield, P conc., P uptake; stand counts - calculate plant populations
- Combine harvest center two rows 45 ft long in two 22.5 ft segments; at harvest collect grain sample analyze for total P

Precipitation and air temperature at Waseca.


Summary of soil test attributes (2014)

				_	рН		Olsen P	
Location	Dep.	SOM	Bray P	Exch. K	Avg.	Range	Avg.	Range
	inch	%	pp	om		-	p	pm
New Rich.	0-6	4.7	13	135	7.0	5.8-8.0	8	3-24
	6-12	3.6	4	92	7.4	6.4-8.1	4	2-7
St. Charles	0-6	2.6	11	98	6.8	6.3-7.3	8	5-11
	6-12	2.1	11	91	6.7	6.3-7.1	8	5-12
Waseca	0-6	4.8	6	184	6.6	5.7-7.8	5	2-10
	6-12	4.0	5	116	6.9	5.7-7.9	4	2-6


New Richland 2014



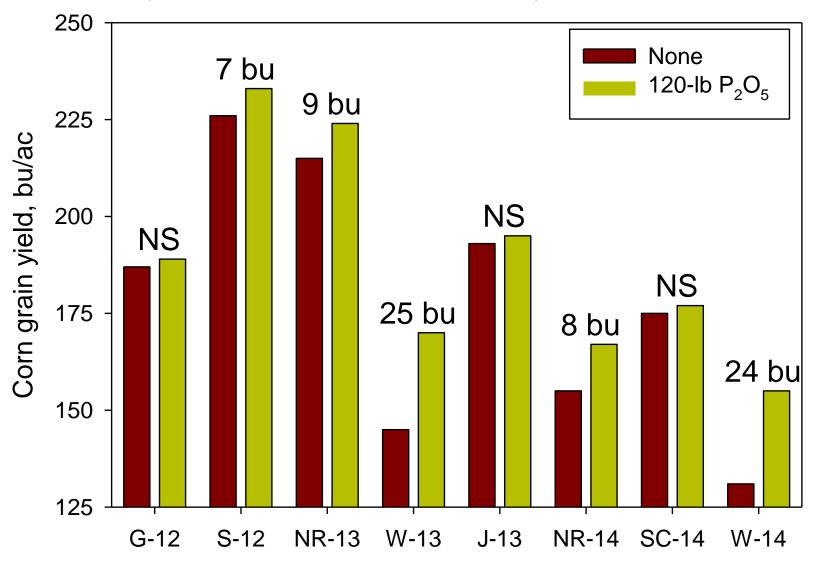
Saint Charles 2014

Statistical significance of treatment main effects for V5 corn plants by location (2014).

Parameter	Location	Broadcast P	Starter P	Bdct*Starter
		P > F		
V5 Plant Mass	New Richland	0.001	0.017	0.583
	St. Charles	0.007	0.002	0.271
	Waseca	0.016	<0.001	0.578
Plant P conc.	New Richland	<0.001	0.382	0.526
	St. Charles	<0.001	0.092	0.314
	Waseca	<0.001	0.916	0.925
Plant P uptake	New Richland	<0.001	0.029	0.873
	St. Charles	<0.001	<0.001	0.110
	Waseca	0.001	<0.001	0.390

Summary: V5 whole plants

- Broadcast P increased V5 plant mass, P concentration and P uptake at all sites in 2014, a cool and very wet spring.
- Starter (APP) increased V5 mass and P uptake at all sites in 2014.

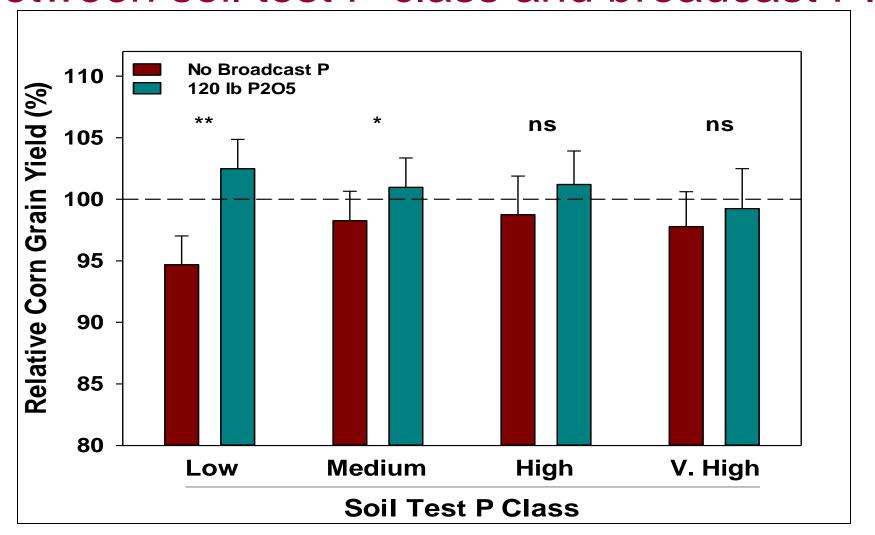


Significance of treatment main effects for grain yield and moisture by location (2014).

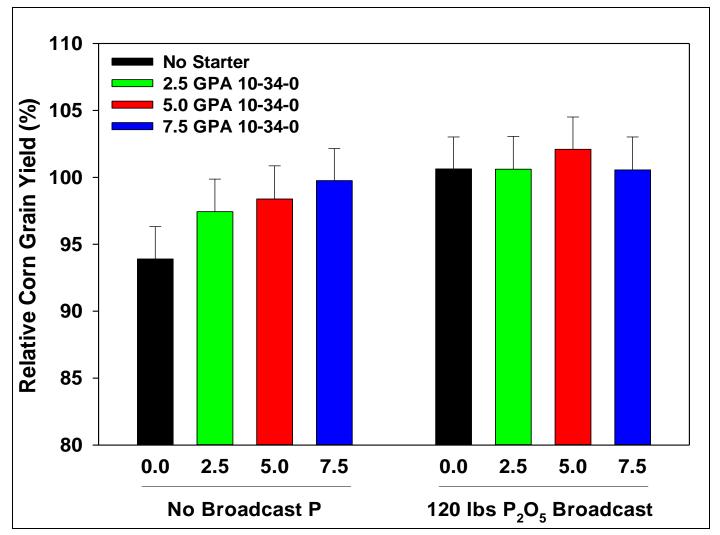
Parameter	Location	Broadcast P	Starter P	Bdct*Starter
		P > F		
Grain Yield	New Richland	0.002	0.158	0.247
	St. Charles	0.348	0.972	0.125
	Waseca	0.005	0.032	0.279
Grain Moisture	New Richland	0.250	0.932	0.560
	St. Charles	0.353	0.086	0.586
	Waseca	0.089	0.012	0.072

Corn yield as affected by broadcast P

Main effects summary for grain yield

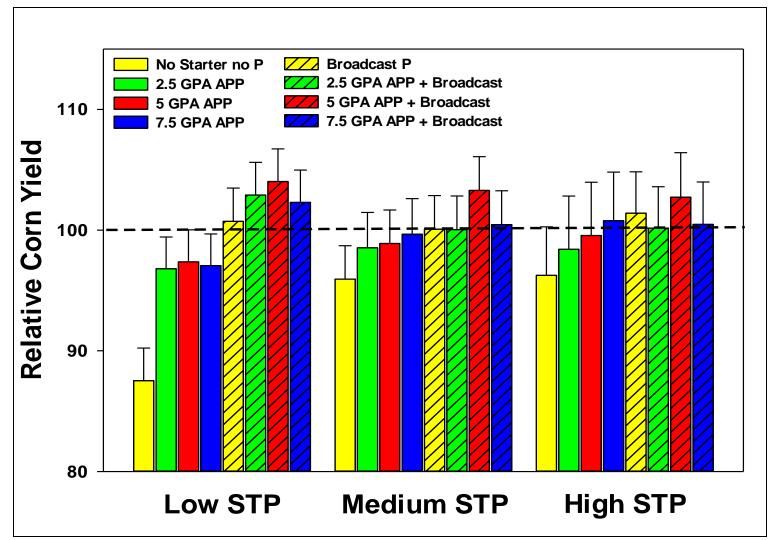

- Broadcast P increased grain yields at 2 of 3 sites in 2014 and 5 of 8 sites overall.
 - Yield response ranged from 7 25 bu/ac.
- Starter fertilizer as APP increased grain yields in 1 of 3 sites in 2014 and 3 of 8 sites overall.
 - Yield response ranged from 17-23 bu/ac in 2014.
- Significant broadcast P x starter P interaction at one site.

Relative yield as affected by treatment main effects across locations.


Relative yield as affected b	y treatment main effe	ects across locations.	
	P Soil Test Used to	o Delineate Zones	
Treatment Effects	Olsen P	Bray P	
Soil Test P Level or Class	relative yield, %		
Low (4-7 ppm Olsen)	98.6 a	97.0 a	
Medium (8-11 ppm)	99.6 a	99.8 a	
High (12-15 ppm)	100.0 a	100.5 a	
Very High (16+ ppm)	98.5 a	100.0 a	
Broadcast Rate			
$0 \text{ lb P}_2\text{O}_5/\text{ac}$	97.4 b	97.4 b	
120 lb	101.0 a	101.3 a	
Starter (APP, 10-34-0) Rate			
0 gal/ac	97.3 b	97.2 b	
2.5 gal	99.0 ab	99.3 a	
5.0 gal	100.2 a	100.6 a	
7.5 gal	100.2 a	100.2 a	
Interactions, $(P > F)$			
Level×Broadcast Rate	0.04	0.05	
Level×Starter Rate	0.50	0.29	
Broadcast Rate×Starter Rate	0.09	0.10	

Relative yield as affected by the interaction between soil test P class and broadcast P.

Relative yield as affected by the interaction between broadcast and starter P rates.



Summary for relative yield across sites.

- Broadcast P increased relative yields about 3.5 percentage points.
- 5 and 7.5 gal/ac of APP increased grain yields about 3 percentage points compared with 0 gal/ac of APP.
- A significant STP level/class x broadcast P rate interaction showed: broadcast P increased yields only at Low and Medium STP levels.
- A significant (a=0.10) broadcast x starter P interaction showed: APP increased yields only when broadcast P was not applied

Relative yield as affected by broadcast and starter P rates across soil test P classes.

Acknowledgements

- The authors are most grateful to:
 - the Fluid Fertilizer Foundation, Minnesota
 Corn Growers, Corn Research and Promotion
 Council for funding this project
 - FFF partnering labs for "in-kind" support
 - research crews at the Department of Soil,
 Water, and Climate and Southern Research
 and Outreach Center for their assistance
 - -farmer cooperators for their assistance and the use of land

QUESTIONS

Jeffrey Vetsch
Univ. of Minnesota
Southern Research and Outreach Center

jvetsch@umn.edu

http://sroc.cfans.umn.edu/People/Staff/JeffreyVetsch/index.htm